Model-based Evaluation: from Dependability Theory to Security
نویسنده
چکیده
How to quantify security is a classic question in the security community that until today has had no plausible answer. Unfortunately, current security evaluation models are often either quantitative but too specific (i.e., applicability is limited), or comprehensive (i.e., system-level) but qualitative. The importance of quantifying security cannot be overstated, but doing so is difficult and complex, for many reason: the “physics” of the amount of security is ambiguous; the operational state is defined by two confronting parties; protecting and breaking systems is a cross-disciplinary mechanism; security is achieved by comparable security strength and breakable by the weakest link; and the human factor is unavoidable, among others. Thus, security engineers face great challenges in defending the principles of information security and privacy. This thesis addresses model-based system-level security quantification and argues that properly addressing the quantification problem of security first requires a paradigm shift in security modeling, addressing the problem at the abstraction level of what defines a computing system and failure model, before any system-level analysis can be established. Consequently, we present a candidate computing systems abstraction and failure model, then propose two failure-centric model-based quantification approaches, each including a bounding system model, performance measures, and evaluation techniques. The first approach addresses the problem considering the set of controls. To bound and build the logical network of a security system, we extend our original work on the Information Security Maturity Model (ISMM) with Reliability Block Diagrams (RBDs), state vectors, and structure functions from reliability engineering. We then present two different groups of evaluation methods. The first mainly addresses binary systems, by extending minimal path sets, minimal cut sets, and reliability analysis based on both random events and random variables. The second group addresses multi-state security systems with multiple performance measures, by extending Multi-state Systems (MSSs) representation and the Universal Generating Function (UGF) method. The second approach addresses the quantification problem when the two sets of a computing system, i.e., assets and controls, are considered. We adopt a graph-theoretic approach using Bayesian Networks (BNs) to build an asset-control graph as the candidate bounding system model, then demonstrate its application in a novel risk assessment method with various diagnosis and prediction inferences. This work, however, is multidisciplinary, involving foundations from many fields, including security engineering; maturity models; dependability theory, particularly reliability engineering; graph theory, particularly BNs; and probability and stochastic models.
منابع مشابه
Quantitative evaluation of software security: an approach based on UML/SecAM and evidence theory
Quantitative and model-based prediction of security in the architecture design stage facilitates early detection of design faults hence reducing modification costs in subsequent stages of software life cycle. However, an important question arises with respect to the accuracy of input parameters. In practice, security parameters can rarely be estimated accurately due to the lack of sufficient kn...
متن کاملAn Improved Comprehensive Evaluation Model of Software Dependability based on Rough Set Theory
Dependability of software, a major concern in many computer applications, can be improved through several means. But systematic approaches for its evaluation do not exist, which is the prerequisite for dependability control and improvement. Software dependability evaluation is an urgent problem to be solved. There is some subjectivity about weighting coefficient when applying fuzzy comprehensiv...
متن کاملA Security Evaluation Framework Based on STRIDE Model for Software in Networks
Software in networks, which is a special kind of applications in service-oriented computing and ultra-large-scale systems, is a complex software system deploying on network environment. Requirements of networked software pose many security problems owing to the dynamic topology structure and users’ uncertainty. How to evaluate the degree of software security in networks is a challenging problem...
متن کاملModel-Driven Engineering for Trusted Embedded Systems Based on Security and Dependability Patterns
Nowadays, many practitioners express their worries about current software engineering practices. New recommendations should be considered to ground software engineering on two pillars: solid theory and proven principles. We took the second pillar towards software engineering for embedded system applications, focusing on the problem of integrating Security and Dependability (S&D) by design to fo...
متن کاملA Novel Image Encryption Model Based on Hybridization of Genetic Algorithm, Chaos Theory and Lattice Map
Encryption is an important issue in information security which is usually provided using a reversible mathematical model. Digital image as a most frequently used digital product needs special encryption algorithms. This paper presents a new encryption algorithm high security for digital gray images using genetic algorithm and Lattice Map function. At the first the initial value of Logistic Map ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013